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Abstract: 

Business intelligence is an approach that includes processes and systems for transformation of the raw data into 

meaningful and useful information which enables effective, systematic and purposeful analysis of an organization and 

its competitive environment. This paper aims to analyze the impact of the level of business intelligence maturity to 

organizational performance of the company. Moreover, since there is a rising awareness among practitioners of the role 

of the organizational culture for the successful functioning of the company, the role of the organizational culture is 

taken into consideration in this research. In order to meet the aim of the paper, a survey has been conducted. Data has 

been collected through questionnaires on a sample of 177 Croatian and Slovenian companies and analyzed by means of 

the cluster analysis. The analysis identified two clusters. The results of the cross-tabulation analysis of the clusters 

reveal statistically significant differences in terms of the company turnover and dominant organizational culture 

between them. 
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1. Introduction 

In the new global economy and in the conditions of growing number of data provided by the technology development, 

business intelligence (BI) can be considered as a central approach for successful management of the relevant business 

data in order to provide support to the decision-making processes. BI encompasses all processes and systems (e.g. data 

warehouses, data marts, analytical tools such as reporting tools, ad hoc analytics and OLAP, in-memory analytics, 

planning, alerts, forecasts, scorecards, data mining) that transform raw data into meaningful and useful information and 

enable effective, systematic and purposeful analysis of an organization and its competitive environment [1], [2], [3]. It 

is highly important for organizations to be able to recognize and exploit relevant and important information among 

enormous amount of data generated in business world each day. Only if BI is used to enhance decision making [4] or to 

improve business processes [5], it can affect the organization's performance. Therefore, BI can be an important means 

of competitive advantage for the company, if properly applied and utilized. 

One of the ways of measuring the success of BI usage within the company is assessing the BI maturity. Although there 

is a number of BI maturity models developed over time (e.g. Watson et al. [6], Aho [7], Tan et al. [8]), according to our 

knowledge, there is no BI maturity model that would be commonly accepted and widely used for researches. 

Furthermore, most maturity models [9] only address certain aspects of technological maturity or system quality (such as 

data integration and analytical capabilities) and output quality, which refers to information quality and as such they are 

not comprehensive. 

Besides dealing with the large amounts of information, there is also a rising awareness among practitioners of the role 

of the organizational culture for the successful functioning of the company. Moreover, this topic is being in the scope of 

many researchers in the last few decades, resulting in growing body of literature dealing with examining organizational 

culture and its impact on organizational functioning and performance (e.g. Balthazard et al. [10], Jacobs et al. [11], 

Naranjo-Valencia et al. [12]). 

In the light of organizational performance (OP), current researches also reveal BI to be of a great importance in 

achieving higher business performance (e.g. Sparks [13], Wieder and Ossimitz [14], Daneshvar Kakhki and Palvia 

[15]). However, to our best knowledge, there is no research that would investigate the combined impact of both BI and 

organizational culture to OP. Therefore, the goal of the paper is to analyze the impact of BI to OP and the role of 

organizational culture in that impact by using cluster analysis for analyzing the data collected through questionnaires. 

In order to fulfill the goals of this paper, its structure is as follows. After this introduction, a brief literature review is 

given, concentrating on previous research of the impact of BI and organizational culture on OP as well as the previous 

research on the usage of cluster analysis in information systems research. Third part of this paper focuses on the 

methodology used for this study, providing the overview of the research instrument, sample characteristics and k-means 

clustering procedure. Fourth part of the paper presents the results of the data analysis, followed by the discussion in the 

fifth part. At the end, a short conclusion with limitations and plans for future research is presented. 

2. Literature review 

This section of the paper presents short literature review on previous researches concentrated on the impact of BI on OP 

and the impact of organizational culture on the usage of information systems and OP. Also, the short overview of the 

usage of cluster analysis in previous information systems research is presented. 

2.1 Previous research about impact of business intelligence on organizational performance 

For the purpose of this study and in order to revise previous researches on the impact of BI on OP, the definition of BI 

given by Moss and Atre [16] has been accepted. They define BI as “an architecture and a collection of integrated 

operational as well as decision-support applications and databases that provide the business community easy access to 

business data” [16]. Bosilj Vuksic et al. discuss that integration of BI with other systems in the company [17]. 
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When it comes to the previous researches of the impact of BI on OP, Elbashir et al. [18] emphasize the need of 

examining that impact on the two levels of performance, which are (1) business process performance and (2) OP, 

indicating that measuring BI benefits on organizational level can be viewed as a tool for evaluation of the understanding 

of OP benefits within the company. On the other hand, a number of researches on BI reveal its effects to the OP. For 

example, Sparks [9] provides empirical confirmation of BI usage resulting in OP benefits. Moreover, Wieder and 

Ossimitz [14] also deliver evidence of direct and indirect impact of BI to decision support improvements. Based on the 

secondary data analysis from public companies in the USA, Daneshvar Kakhki and Palvia [15] report positive 

relationship between the implementation of BI and OP. 

Previous research of BI often implies measuring the BI maturity in order to investigate its impact to other aspects of the 

company. So far, in the field of BI, there has been a number of maturity models developed. Lahrmann et al. [19] 

conducted a literature review on BI maturity models resulting with an overview of twelve different maturity models 

developed from 2001 to 2009. This literature review has recently been updated by Raber et al. [20], who propose yet 

another instrument for measuring BI maturity. For the purpose of this study, the focus is put on the BI maturity model 

proposed by Dinter [21], as this is one of the most comprehensive and systematic BI maturity models that covers all 

important aspects, organized in three dimensions: functionality, technology, and organization. Addressing only 

functionality and technology issues of BI cannot result in improved organizational performance. Pejić Bach et al. [22] 

show the importance of some organizational factors on BI successful implementation. Therefore, it is crucial that BI 

maturity model includes also the organizational dimension when used in such a study. The Dinter’s model development 

with the focus on comprehensiveness and was based on an extensive analysis of previously existing models. It is a 

conceptual BI maturity model based on the original work of Steria Mummert Consulting in cooperation with 

universities from 2004 which suggests five stages of BI maturity, respectively: (1) individual information, (2) 

information islands, (3) information integration, (4) information intelligence, and (5) enterprise information 

management.  

2.2 Previous research on the usage of cluster analysis in information systems research 

Cluster analysis is a well-known statistic method for analyzing data. It is one of the multivariate statistical methods in 

which the data structure for grouping multivariate observations in clusters is sought. Therefore, it has been previously 

used in many studies by numerous authors. Both information systems research and BI research are no exception to that, 

as it is visible from few examples listed in continuation. 

For example, Doherty et al. [23] used cluster analysis for identification of different classes of approach to the 

application of strategic information systems planning based on ten key planning dimensions. The results of the analysis 

of 267 responses collected from different companies revealed four clusters indicating four alternative approaches to the 

strategic information systems planning application [23]. Another example is the work of Wallace et al. [24] who used 

cluster analysis in analyzing the data collected from 507 software project managers through questionnaires. By 

employing k-means cluster analysis, they identified the trends in risk dimensions across three clusters, being low, 

medium and high risk projects [24]. The impact of project scope, sourcing practices and strategic orientation on project 

risks has been examined as well in the same research [24]. In their work, Balijepally et al. [25] reviewed the usage of 

cluster analysis in information systems researches published in four information system journals and provided 

guidelines for future improvement of the application of cluster analysis in information systems researches.  

When looking at the usage of cluster analysis in BI research, one of the examples is the work of Fourati-Jamoussi and 

Niamba [26] who performed a cluster analysis to identify the different profiles of the users of the BI tools, highlighting 

the importance of user perception in designing BI tools. Also, Raber et al. [27] used cluster analysis in order to 

construct already mentioned Capability Maturity Model for BI [20]. 
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2.3 Impact of organizational culture to usage of information systems and organizational performance 

Organizational culture is the way of life within the organization. According to Schein [28], an organizational culture is 

“a pattern of basic assumptions invented, discovered, or developed by a given group as it learns to cope with its 

problems of external adaptation and internal integration, that has worked well enough to be considered valid and, 

therefore is to be taught to new members as the correct way to perceive, think, and feel in relation to those problems”. 

Another definition, as provided in Economic lexicon [29], defines organizational culture as set of values and behaviors 

which contribute to the unique social and psychological environment of the organization. Organizational or enterprise 

culture is based on shared attitudes, beliefs and customs, as well as written and unwritten rules that have evolved over 

time and are considered valid by all employees within a company. It is mainly invisible, but very powerful social force 

[30], which can be relevant in various areas, such as e-service research [31]. 

Existing literature offer a number of different typologies of organizational culture. For the purpose of this research, an 

organizational culture typology given by Cameron and Quinn [32] has been accepted. It classifies organizational culture 

into four types, being: (1) clan, (2) adhocracy, (3) market and (4) hierarchy [32]. 

The role of organizational culture in achieving higher business results and better OP has intrigued researchers for a few 

decades (e.g. Deal and Kennedy [33], Denison [34], Marcoulides and Heck [35], Barney [36]). In recent period, there 

are also a number of studies dealing with organizational culture influence on the performance of the organization. Based 

on extensive correlational analysis, Balthazard et al. [7] argue that constructive organizational culture has a positive 

impact on OP, while dysfunctional defensive organizational culture has a negative impact on OP. Jacobs et al. [11] 

examined the associations between organizational culture and performance in healthcare organizations and concluded 

that organizational culture has a significant role in achieving higher performance. Naranjo-Valencia et al. [12] report 

clan and adhocracy organizational culture to have a positive impact on OP, while hierarchy and market organizational 

culture resulted with a negative impact. 

3. Methodology 

This section presents the methodology used for this research, giving the overview of the research instrument and sample 

characteristics as well as the presentation of the k-means clustering procedure. 

3.1 Research instrument 

This study is based on the questionnaire developed by the PROSPER research group. The designed questionnaire is 

comprised out of 12 parts referring to: (1) BPM maturity, (2) usage of social BPM, (3) BI maturity, (4) CPM, (5) 

BPM/CPM alignment, (6) BPM/BI alignment, (7) BI/CPM alignment, (8) process performance assessment, (9) OP 

assessment, (10) organizational culture assessment, (11) company characteristics and (12) demographic respondents’ 

characteristics. For the purpose of this paper, besides the company characteristics, three parts were taken into further 

analysis: (1) BI maturity, (2) organizational culture assessment, and (3) OP assessment. 

3.1.1 Measurement of business intelligence maturity and organizational performance 

BI maturity part of the questionnaire has been developed based on the BI maturity model proposed by Dinter [21]. 

However, for the purpose of this research, Dinter’s original model has been reduced to ten questions, providing that all 

the relevant maturity aspects have been included in the measurement instrument. For each question, two opposite 

statements (A and B) are provided as answers. Respondents state their level of agreement for each question using the 5-

points Likert scale, with 1 representing total agreement with the statement A, while the 5 is representing total agreement 

with the opposite statement B. The questions refer to: (1) the scope of BI systems use, (2) the level of data architecture 

maturity, (3) the relevance of BI for the organization, (4) the level of technical architecture maturity, (5) the level of 

data management maturity, (6) type of BI tools used within the organization, (7) organizational structure related to BI, 

(8) the level of BI processes maturity, (9) the level of BI profitability assessment and (10) BI strategy. 
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The constructs for assessing the OP within the organizations are being designed based on the research conducted by 

Law and Ngai [37]. This section of the questionnaire consists of five statements referring to: (1) level of customer 

satisfaction with products/services, (2) customer retention rate, (3) sales growth rate, (4) profitability of the organization 

and, (5) competitive position of the organization. Respondents expressed their level of agreement with each statement 

on the Likert scale from 1 to 5, where 1 represents total disagreement while 5 represents total agreement. The OP 

assessment is based on the method of self-evaluation which has been proven in previous researches as a valid method of 

assessing OP [37]. 

3.1.2 Measurement of dominant organizational culture 

In the designed questionnaire, organizational culture assessment is based on the Organizational Culture Assessment 

Instrument (OCAI), developed by Cameron and Quinn [32]. It contains six groups of statements referring to: (1) 

dominant characteristics, (2) organizational leadership, (3) management of employees, (4) organizational glue, (5) 

strategic emphasis and, (6) criteria for success. Each of these groups of statements contains four statements representing 

one of the four organizational culture types, as stated earlier. In each group of statements, respondents are supposed to 

divide total of 100 point among the four proposed statements, based on the similarity with the situation in surveyed 

company. The dominant organizational culture type is the one with the highest average of collected points. Originally, 

OCAI assesses both current and preferred organizational culture of the surveyed company. However, for the purpose of 

this research, only the current organizational culture has been assessed. 

3.2 Sample characteristics 

This research has been conducted in companies operating in Slovenia and Croatia between March and December of 

2016. These two neighbor countries have been selected based on the similar history and characteristics. Moreover, there 

have already been some researches based on the combined data collected in Slovenia and Croatia (e.g. Škrinjar et al. 

[38], Buh [39], Hernaus et al. [40]). The sample selection frame for this research has been the Registry of business 

entities in Croatia and business directory bizi.si in Slovenia where all middle-sized and large companies have been 

alphabetically sorted and chosen in the random sample by method of steps with the help of random number table. The 

questionnaires have been distributed in paper forms and as an online survey. Within the companies, the request for 

participation has been sent to the members of top management or person in charge of BI and BPM. In Slovenia, the 

questionnaires have been sent to 1394 organizations out of which 171 responses have been received, which makes 

12.27% response rate. In Croatia, the questionnaires have been sent to 500 organizations out of which 101 responses 

have been received, making response rate of 20.2%. Further, before the analysis, the collected data has been checked for 

missing values and revised for possible outliers and response illogicality. 

Final sample consisted of overall 177 responses out of which 109 responses were from Slovenia and 68 responses were 

from Croatia. When it comes to the size of the respondent’s company in terms of the number of employees, most of 

them (47.5%) are medium-sized companies, while minority of the companies participating in the study are small 

companies (10.2%). When looking at the turnover, majority of the surveyed companies had the turnover between 10 

and 50 million euros (36.7%), followed by those which had turnover more than 50 million euros (31.6%), while 23.2% 

of the surveyed companies had turnover lower than 10 million euros. The complete overview of sample characteristics 

is given by table 1. 

When looking at the sample with the regards to the industry sector, following Gelo and Družić [41] we grouped the 

surveyed companies into five economy sectors. Therefore, in our sample there is a minority of 2.8% of the surveyed 

companies from the primary sector, while the majority of them are from the secondary sector (35.0%). Table 2 gives the 

complete overview of the sample structure according to the industry sector. 
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Table 1. Country of origin and size of the companies in the sample, n=177 

Characteristic Category Number Share (%) 

Country Slovenia 109 61.6% 

Croatia 68 38.4% 

Number of employees 0-50 employees 18 10.2% 

51-249 84 47.5% 

250-1000 47 26.6% 

1000+ employees 28 15.8% 

Turnover 0-10 mill. EUR 41 23.2% 

10 mill. EUR-50 mill. EUR 65 36.7% 

50 mill. EUR+ 56 31.6% 

N.A. 15 8.5% 

Source: authors’ work; Note: N.A. – not available 

 

Table 2. Main industry sector of the companies in the sample, n=177 

Characteristic Category Number Share (%) 

Industry sector Primary 5 2.8% 

Secondary 62 35.0% 

Tertiary 53 29.9% 

Quaternary 30 16.9% 

Quinary 20 11.3% 

N.A. 7 4.0% 

Source: authors’ work; Note: N.A. – not available 

3.3 K-means clustering procedure 

Cluster analysis provides the means for identification of homogenous groups of observations, cases, units or objects 

[42]. It assumes that it is possible to find a natural way of grouping that is meaningful to the researcher, although there 

are no known groups or their number previous to the analysis. The objective of the cluster analysis is to find an optimal 

way of grouping where observations within each cluster have similar characteristics. Contrariwise, different clusters are 

mutually different meaning that observations belonging to different clusters have different characteristics.  

Cluster analysis begins with selecting the variables for the analysis, followed by the selection of clustering procedure 

which governs the way clusters are formed. For the purpose of this study, k-means clustering procedure has been 

selected. According to Hartigan and Wong [43], it is a procedure which divides “M points in N dimensions into K 

clusters so that the within-cluster sum of squares is minimized”. The procedure iteratively observes means of the 

clusters in a way that observations are simultaneously relocated into the cluster with the closest mean [44]. K-means 

cluster analysis continues to recalculate clusters’ means and relocate observations in as many steps as needed until no 

observation is relocated into a different cluster.  
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4. Results 

This section presents the results of the study of impact of business intelligence to OP, with the regards to the 

organizational culture. 

4.1 Descriptive analysis 

In order to gain a better insight and as a basis for cluster analysis, the descriptive statistical analysis of individual 

indicators of BI maturity, OP and organizational culture for 177 observed companies from Croatia and Slovenia has 

been conducted. Moreover, the descriptive statistical analysis of summary indicators of BI maturity, OP and 

organizational culture has also been conducted. Table 3 presents the explanation of the research instrument indicators. 

Table 3. Research instrument indicators 

Indicator group Indicator code Indicator 

Business intelligence maturity (BI) BI1 The scope of business intelligence systems usage 

BI2 The level of data architecture maturity 

BI3 The impact of business intelligence 

BI4 The level of technical architecture maturity of BI 

BI5 The level of data management maturity 

BI6 Type of BI tools used within the organization 

BI7 The organizational structure related to BI 

BI8 The level of maturity of BI processes 

BI9 The level of the profitability assessment of BI 

BI10 The level of BI strategy 

Organizational performance (OP) OP1 Value for money 

OP2 Customers retention rate 

OP3 Sales growth rate 

OP4 Profitability of the company 

OP5 Overall competitive position 

Organizational culture assessment (OC) OC1 Dominant characteristics 

OC2 Organizational leadership 

OC3 Management of employees 

OC4 Organization glue 

OC5 Strategic emphases 

OC6 Criteria of success 

Source: authors’ work 

4.1.1 Business intelligence maturity and organizational performance 

The analysis of the collected BI maturity and OP data has begun with descriptive statistics of the individual indicators 

of BI maturity and OP, as shown by table 4. Results reveal that the indicator BI4 indicating the level of technical 

architecture maturity of BI has the highest mean of 3.67 with the standard deviation of 1.241. On the contrary, the 
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lowest mean is present with the indicator BI9 representing the level of the profitability assessment of BI with the mean 

of 2.70 and the standard deviation of 1.355, which is also the highest standard deviation among BI maturity indicators. 

The lowest standard deviation of 1.097 is visible with the BI5 indicator, representing the level of data management 

maturity. Among OP indicators, the highest mean of 3.93 and at the same time the lowest standard deviation of 0.761 is 

present with the OP1 indicator, representing the level of customer satisfaction with products/services of the company. 

On the other hand, the lowest mean of 3.27 with the highest standard deviation of 1.024 among OP indicators is visible 

at OP4 indicator, representing the profitability of the organization. 

Table 4. Descriptive statistics of individual indicators of business intelligence maturity and organizational performance, n=177 

Indicator N Min Max Mean St. Dev. 

Business intelligence maturity 

BI1 177 1 5 3.21 1.265 

BI2 177 1 5 3.38 1.107 

BI3 177 1 5 3.50 1.114 

BI4 177 1 5 3.67 1.241 

BI5 177 1 5 3.62 1.097 

BI6 177 1 5 3.28 1.243 

BI7 177 1 5 3.20 1.267 

BI8 177 1 5 3.12 1.099 

BI9 177 1 5 2.70 1.355 

BI10 177 1 5 3.02 1.263 

Organizational performance indicators 

OP1 177 1 5 3.93 0.761 

OP2 177 1 5 3.84 0.845 

OP3 177 1 5 3.28 0.993 

OP4 177 1 5 3.27 1.024 

OP5 177 1 5 3.45 1.005 

Source: authors’ work 

In order to test convergent validity, a factor analysis has been conducted. Table 5 represents the factor loadings of 

individual indicators of BI maturity and OP. As it is visible from the table 5, all indicators of BI have been classified as 

factor 1, comprising BI variable. Similar, all indicators of OP have been classified as factor 2, comprising OP variable 

as OP. In case of BI, indicator BI6 representing the type of BI tools used within the organization has the most powerful 

influence to BI, while indicator BI9 representing the level of the profitability assessment of BI has the least powerful 

influence. In case of OP, the most powerful influence is visible with indicator OP5 representing the overall competitive 

position of the company, while the least powerful influence is present with indicator OP1 representing the level of 

customer satisfaction with products/services of the company. All of the calculated factor loadings indicate positive 

influence of indicators to overall variables for both BI and OP. 

Figure 1 represents the plot of two-factor rotated solution and the plot of eigenvalues of individual indicators of BI 

maturity and OP. As it is visible from the figure 1, there are no critical outliers which should be left out of the further 

analysis. The plot of eigenvalues shows that the most of the variance in data can be accounted for by two eigenvectors. 

The plot of two-factor rotated solution of factor loadings for BI and OP indicators demonstrates the two independent 

factors, as it was already shown also by table 5. 
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Table 5. Factor loadings of individual indicators of business intelligence maturity and organizational performance, n=177 

Indicator Factor 1 Factor 2 

BI1 0.809  

BI2 0.759  

BI3 0.661  

BI4 0.762  

BI5 0.790  

BI6 0.850  

BI7 0.777  

BI8 0.837  

BI9 0.680  

BI10 0.805  

OP1  0.618 

OP2  0.775 

OP3  0.870 

OP4  0.819 

OP5  0.875 

Source: authors’ work 
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Fig. 1. Factor loadings and plot of eigenvalues of individual indicators of business intelligence maturity and organizational performance 

Table 6 presents the descriptive statistics of summary indicators of BI maturity and OP within the observed companies 

in Croatia and Slovenia. Average level of BI maturity is 3.270 with the standard deviation of 0.945. Average OP grade 

for the observed companies is 3.551 with the standard deviation of 0.751. In order to test the internal consistency and 

the reliability of the research instrument, Cronbach’s alpha coefficients for BI and OP have been calculated. Both BI 

and OP summary indicators have Cronbach’s alpha coefficients higher than the cut-off value of 0.70 recommended by 

Nunnally and Bernstein [45]. Therefore, the internal consistency and the reliability of the research instrument have been 

confirmed. 
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Table 6. Descriptive statistics of summary indicators of business intelligence maturity and organizational performance, n=177 

Indicator N Min Max Mean St. Dev. Cronbach's alpha 

BI 177 1 5 3.270 0.945 0.929 

OP 177 1 5 3.551 0.751 0.866 

Source: authors’ work 

Table 7 shows the Pearson’s correlation matrix for the observed companies summary BI maturity and summary OP 

variables. It is visible that there is a weak positive correlation between summary BI maturity variable and summary 

variable for OP. This correlation is statistically significant at the 5% significance level. Based on the presented 

Pearson’s correlation matrix, figure 2 presents the scatter plot of summary indicators of BI maturity and OP. 

Table 7. Pearson’s correlation matrix, h=2 variables, n=177 companies 

Variable Summary BI Summary OP 

Summary BI 1.000 0.301* 

Summary OP  1.000 

Source: authors’ work; Note: * - statistically significant correlations at the 5% significance level 

Organizational performance (OP)

Business Intelligence (BI)

 

Fig. 2. Scatter plot of summary indicators of business intelligence maturity and organizational performance 

4.1.2 Organizational culture of sample companies 

The descriptive statistics of indicators of the organizational culture of the observed companies is presented by the table 

8. Among the dominant characteristics group of indicators, the highest average of 28.82 with the standard deviation of 

18.906 is in the case of the OC1c indicator which represents the strong focus on achieving goals, completing tasks and 

competitive employees. The lowest average of 23.46 with the standard deviation of 18.611 is present with the OC1a 

indicator, representing clan culture characteristics to be dominant. Within the organizational leadership group of 

indicators, the highest average of 33.36 with the standard deviation of 19.634 belongs to the OC2d indicator, 

representing the coordinated and organized leadership which provides smooth performance. The lowest average of 

20.80 with the standard deviation of 13.876 belongs to the OC2b indicator, representing the innovative and 
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entrepreneurial leadership prone to taking risks. In the management of employees group of indicators, the highest 

average of 32.34 with the standard deviation of 18.798 is visible with the OC3a indicator, representing the teamwork, 

consensus and cooperation, while the lowest one is present with the OC3b indicator (19.88 with the standard deviation 

of 14.230), representing the individual risk taking, innovation, freedom and uniqueness. In the fourth group of 

indicators, dedicated to organizational glue, the highest average of 30.34 with the standard deviation of 18.553 belongs 

to the OC4a indicator, representing the loyalty and mutual trust and as the core values on which the company is based 

on. On the contrary, the lowest average of 18.40 with the standard deviation of 12.570 is visible for the OC4b indicator, 

representing the commitment to innovation and development as well as the focus on setting new guidelines. The 

strategic emphasize group of indicators revealed the highest average of 31.19 with the standard deviation of 20.646 for 

the OC5d indicator, representing strong focus on sustainability and stability with the great importance of effectiveness, 

control and smooth operation of the company. In contrast, the lowest average of 20.40 with the standard deviation of 

12.120 is present with the OC5b indicator which represents strong focus on acquiring new resources, setting new 

challenges, trying out new approaches and finding opportunities. In the last group of indicators, dedicated to criteria of 

success, the highest average of 36.68 belongs to the OCd6 indicator which represents efficiency based success and 

importance of reliable delivery, smooth production and low operating costs. The lowest average in this group of 

indicators belong to the OCb2 indicator (17.97 with the standard deviation of 12.022) which represents success based 

on the possession of unique and new products and/or services. In that case, a company is a leader in product and/or 

service innovation. 

Table 8. Descriptive statistics of indicators of organizational culture 

 

 Indicator N Min Max Mean St. Dev. 

OC1 – Dominant characteristics 

OC1a 177 0 100 23.46 18.611 

OC1b 177 0 100 23.53 16.825 

OC1c 177 0 100 28.82 18.906 

OC1d 177 0 100 24.14 20.814 

OC2 – Organizational leadership 

OC2a 177 0 100 23.82 16.485 

OC2b 177 0 100 20.80 13.876 

OC2c 177 0 100 21.96 19.470 

OC2d 177 0 100 33.36 19.634 

OC3 – Management of employees 

OC3a 177 0 100 32.4e3 18.798 

OC3b 177 0 100 19.88 14.230 

OC3c 177 0 100 21.44 18.389 

OC3d 177 0 100 26.25 20.598 

OC4 – Organizational glue 

OC4a 177 0 100 30.34 18.553 

OC4b 177 0 55 18.40 12.570 

OC4c 177 0 100 24.97 17.188 

OC4d 177 0 100 26.29 20.759 
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 Indicator N Min Max Mean St. Dev. 

OC5 – Strategic emphases 

OC5a 177 0 100 24.21 16.712 

OC5b 177 0 50 20.40 12.120 

OC5c 177 0 90 24.20 14.851 

OC5d 177 0 100 31.19 20.646 

OC6 – Criteria of success 

OC6a 177 0 100 19.73 14.194 

OC6b 177 0 70 17.97 12.022 

OC6c 177 0 80 25.67 15.231 

OC6d 177 0 100 36.68 20.632 

Source: authors’ work 

The descriptive statistics of summary indicators of organizational culture by types is presented by table 9. Overall, the 

highest average grade has been given to the hierarchy variable, being the average of 29.652 with the standard deviation 

of 15.843. The lowest average of 20.164 with the standard deviation of 8.701 belongs to the adhocracy variable. The 

largest range of points is present with the clan variable, while the smallest range of points belongs to adhocracy 

variable. 

Table 9. Descriptive statistics of indicators of organizational culture 

Variable N Min Max Mean St. Dev. 

Clan 177 0.000 96.667 25.665 12.454 

Adhocracy 177 0.000 50.000 20.164 8.701 

Market 177 0.000 65.000 24.510 11.575 

Hierarchy 177 0.000 85.000 29.652 15.843 

Source: authors’ work 

Table 10 presents the sample according to the dominant organizational culture. The overall sample consists of 33.3% of 

companies with hierarchy as s dominant organizational culture, followed by the 31.6% of the companies having clan as 

a dominant organizational culture. On the contrary, only 7.9% of the companies revealed to have adhocracy as their 

dominant organizational culture. 

Table 10. Number of sample companies according to dominant culture, n=177 

Characteristic Category Number Share (%) 

Organizational culture Clan 56 31.6 

Adhocracy 14 7.9 

Market 48 27.1 

Hierarchy 59 33.3 

Source: authors’ work 
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4.2 K-means cluster analysis 

In order to organize collected data into meaningful structures, the k-means cluster analysis has been employed using the 

statistical software Statistica. First, the graph of the cost sequence has been made in order to determinate the best 

number of clusters. As shown by the figure 3, it has been suggested that the best number of clusters for this study is 

two. Graph of the cost sequence illustrates the error function for different cluster solutions which is the average distance 

of observations in samples which are being tested to the assigned cluster centroids [46]. 

Graph of Cost Sequence
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Fig. 3. Graph of the cost sequence 

Next, the ANOVA analysis has been conducted for 15 indicators and two clusters on a sample of 177 observed 

companies. The results of the ANOVA analysis for the BI and OP individual indicators have been presented by the 

table 11. In the presented case, the null hypothesis which states that the means between observed indicators statistically 

differ has been rejected with the statistical significance at the 1% level for all observed indicator, except indicator OP2 

representing customers’ retention rate, where the significance level is at 5%.  

Table 11. ANOVA table, k-means clustering, h=15 variables, k=2 clusters, n=177 sample companies 

Indicator Between sum of squares df Within sum of squares df F-value p-value 

BI1 124.779 1 157.062 175 139.030 0.000** 

BI2 68.905 1 146.733 175 82.180 0.000** 

BI3 51.586 1 166.662 175 54.167 0.000** 

BI4 93.136 1 177.858 175 91.639 0.000** 

BI5 69.329 1 142.546 175 85.114 0.000** 

BI6 104.696 1 167.180 175 109.593 0.000** 

BI7 102.481 1 180.197 175 99.525 0.000** 

BI8 95.879 1 116.629 175 143.865 0.000** 

BI9 146.851 1 176.279 175 145.785 0.000** 

BI10 146.460 1 134.490 175 190.576 0.000** 

OP1 7.137 1 94.908 175 13.160 0.000** 

OP2 3.567 1 122.004 175 5.117 0.025* 

OP3 14.754 1 158.681 175 16.271 0.000** 
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Indicator Between sum of squares df Within sum of squares df F-value p-value 

OP4 9.578 1 174.942 175 9.581 0.002** 

OP5 8.998 1 168.743 175 9.331 0.003** 

Source: authors’ work; Note: * - statistically significant at the 5% significance level; ** 1% level 

 

Table 12 presents the cluster means for the individual indicators of BI and OP. It is visible from the table 12 that 

51.98% of the observed companies has been assigned to the cluster 1, while 48.02% of them has been assigned to the 

cluster 2. Within the cluster 1, the highest mean of 4.370 of the individual indicator is present with the BI4 indicator, 

representing the level of technical architecture maturity of BI, while the lowest one of 3.489 is visible with the OP4 

indicator, representing profitability of the company. Within the second cluster, the highest mean of 3.718 belongs to the 

OP1 indicator, representing the level of customer satisfaction with products and services of the company, while the 

lowest mean of 1.753 is present with the BI9 indicator, representing the level of the profitability assessment of BI. 

 

Table 12. Cluster means, k-means clustering, h=15 variables, k=2 clusters, n=177 sample companies 

BI & OP individual indicators Cluster 1 Cluster 2 

BI1 4.022 2.341 

BI2 3.978 2.729 

BI3 4.022 2.941 

BI4 4.370 2.918 

BI5 4.217 2.965 

BI6 4.022 2.482 

BI7 3.935 2.412 

BI8 3.826 2.353 

BI9 3.576 1.753 

BI10 3.891 2.071 

OP1 4.120 3.718 

OP2 3.978 3.694 

OP3 3.554 2.976 

OP4 3.489 3.024 

OP5 3.663 3.212 

Number of cases 92 85 

Percentage(%) 51.9774 48.0226 

Source: authors’ work. 

 

Figure 4 presents the distribution of 10 BI individual indicators and 5 OP individual indicators across the two identified 

clusters. Those distributions give an insight in the amount of differences of the surveyed companies in each cluster 

according to the observed indicator. The taller the distribution, the differences among the surveyed companies are 

bigger and vice versa, the narrower the distribution is, the smaller are the differences among the observed companies.  
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Graph of distributions for variable: BI1

Number of clusters: 2

Cluster 1 ~ normal(x;4,021739;0,811704)
Cluster 2 ~ normal(x;2,341176;1,075185)
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Graph of distributions for variable: BI2

Number of clusters: 2

Cluster 1 ~ normal(x;3,978261;0,740927)
Cluster 2 ~ normal(x;2,729412;1,073360)
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Graph of distributions for variable: BI3

Number of clusters: 2

Cluster 1 ~ normal(x;4,021739;0,889231)

Cluster 2 ~ normal(x;2,941176;1,061815)
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Graph of distributions for variable: BI4

Number of clusters: 2

Cluster 1 ~ normal(x;4,369565;0,690873)
Cluster 2 ~ normal(x;2,917647;1,265022)
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Graph of distributions for variable: BI5

Number of clusters: 2

Cluster 1 ~ normal(x;4,217391;0,692600)
Cluster 2 ~ normal(x;2,964706;1,085040)
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Graph of distributions for variable: BI6

Number of clusters: 2

Cluster 1 ~ normal(x;4,021739;0,864161)

Cluster 2 ~ normal(x;2,482353;1,086845)
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Fig. 4. Distributions of business intelligence and organizational performance indicators across clusters  

Note: left curve refers to Cluster 1, and right curve to Cluster 2 
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Graph of distributions for variable: BI7

Number of clusters: 2

Cluster 1 ~ normal(x;3,934783;0,935319)
Cluster 2 ~ normal(x;2,411765;1,094294)
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Graph of distributions for variable: BI8

Number of clusters: 2

Cluster 1 ~ normal(x;3,826087;0,735425)
Cluster 2 ~ normal(x;2,352941;0,895835)
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Graph of distributions for variable: BI9

Number of clusters: 2

Cluster 1 ~ normal(x;3,576087;1,091764)
Cluster 2 ~ normal(x;1,752941;0,898489)
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Graph of distributions for variable: BI10

Number of clusters: 2

Cluster 1 ~ normal(x;3,891304;0,818153)
Cluster 2 ~ normal(x;2,070588;0,935901)
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Graph of distributions for variable: OP1

Number of clusters: 2

Cluster 1 ~ normal(x;4,119565;0,626211)

Cluster 2 ~ normal(x;3,717647;0,839668)
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Graph of distributions for variable: OP2

Number of clusters: 2

Cluster 1 ~ normal(x;3,978261;0,725944)
Cluster 2 ~ normal(x;3,694118;0,938889)
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Fig. 4. Distributions of business intelligence and organizational performance indicators across clusters (continued) 

Note: left curve refers to Cluster 1, and right curve to Cluster 2 
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Graph of distributions for variable: OP3

Number of clusters: 2

Cluster 1 ~ normal(x;3,554348;0,930132)
Cluster 2 ~ normal(x;2,976471;0,975613)
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Graph of distributions for variable: OP4

Number of clusters: 2

Cluster 1 ~ normal(x;3,489130;0,966409)
Cluster 2 ~ normal(x;3,023529;1,034828)
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Graph of distributions for variable: OP5

Number of clusters: 2

Cluster 1 ~ normal(x;3,663043;0,880524)
Cluster 2 ~ normal(x;3,211765;1,081160)
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Fig. 4. Distributions of business intelligence and organizational performance indicators across clusters (continued) 

Note: left curve refers to Cluster 1, and right curve to Cluster 2 

 

5. Discussion 

This section provides a short discussion of the cluster analysis presented in the results section of the paper. 

5.1 Characteristics of cluster members according to business intelligence maturity and organizational performance 

The k-means analysis of the 177 companies from Croatia and Slovenia identified two clusters. Figure 5 presents the 

graph of mean values of 10 BI individual indicators and 5 OP individual indicators across two identified clusters. 

Presented cluster means reveal the existence of differences between clusters according to the observed individual 

indicators of BI and OP. 

Cluster 1 comprises 92 companies. According to the results of the analysis, companies assigned to cluster 1 have higher 

levels of BI maturity as well as the better OP. The level of technical architecture maturity of BI in those companies is 

very high which means high level of enterprise-wide data warehouse usage. However, the level of the profitability 

assessment of BI is low in comparison to other BI indicators. In terms of OP, the highest average among other OP 

indicators is visible with the level of customer satisfaction with products and services of the surveyed companies. This 
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indicates that the customers of those companies perceive that they receive their money's worth for the products and 

services of the observed companies. The lowest average results are present with the profitability of the observed 

companies. However, all of the stated results are still above the average values present in the second cluster. 

Cluster 2 consists of remaining 85 surveyed companies. These companies have lower scope of business intelligence 

systems usage which means that BI is usually used in isolated manner by individuals within the companies in second 

cluster. Unlike the trend in first cluster, companies from the second cluster have lower level of the usage of dedicated 

BI storage. On the other hand, similar to trends in cluster 1, companies from cluster 2 also have low average results in 

profitability assessment of BI which indicates that the companies in this cluster have low or no profitability assessment 

of BI. When it comes to the OP, the companies from the second cluster have level of customer satisfaction with 

products and services of the companies as well as the high customers’ retention rate. The lowest results are present in 

case of the sales growth rate which means the sales growth rate is not high above the average of the industry for the 

observed companies. 

 

Fig. 5. Graph of the clusters means. 

While organizations in both clusters follow very similar pattern in terms of organizational performance (OP1 to OP4), 

Cluster 1 obviously include mostly the top performers, while in Cluster 2 are mostly the lower performers. Figure 4 and 

Figure 5 show that the top performers have higher average levels of BI maturity in all its dimensions (BI1 to BI10). 

Therefore, it is clear that there exists a relationship between BI maturity and organizational performance. While BI 

mature and BI immature organizations differ significantly in technological aspects, such as the level of technical 

maturity (BI4) and the types of BI tools used (BI6), the main differences can be found in the organizational dimension, 

i.e. in the level of profitability assessment (BI9) and the level of BI strategy (BI10), and the scope of usage (BI1). In 

other words, organizations with higher level of organizational performance use strategic approach to BI implementation 

with a clearly identified link to the value generated by the use of BI and with this they are also able to provide higher 

acceptance level of BI. It is reasonable to believe based on these results, that in turn these differences in the approach to 

BI implementation are reflected in improved organizational performance. 
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5.2 Differences across clusters according to company characteristics and dominant culture 

In order to examine the differences across clusters according to the company characteristics and dominant 

organizational culture, a cross-tabulation analysis has been conducted. In terms of the country of origin, cluster 1 is 

comprised of roughly 61% of Slovenian companies and 39% of Croatian companies, while cluster 2 is comprised of 

roughly 62% of Slovenian companies and 38% of Croatian companies, indicating almost an equal distribution of the 

companies among clusters with the regards to the country of origin. When it comes to the country of origin and number 

of employees, there are no statistically significant differences between two identified clusters. However, there are 

statistically significant differences among the companies of two clusters in terms of the yearly turnover. The results of 

the cross-tabulation of clusters according to the country of origin and size is presented in table 13. 

Table 13. Cross-tabulation of clusters according to country of origin and size 

Characteristic Category Cluster 1 Cluster 2 Chi-square (p-value) 

Country 

  

Slovenia 56 53 0.041 

(0.839) Croatia 36 32 

Number of employees 

  

  

  

0-50 employees 8 10 1.302 

(0.729) 51-249 43 41 

250-1000 24 23 

1000+ employees 17 11 

Turnover 

  

  

  

0-10 mill. EUR 18 23 10.002* 

(0.019) 10 mill. EUR – 50 mill. EUR 36 29 

50 mill. EUR+ 35 21 

N.A. 3 12 

Source: authors’ work; Note: * - statistically significant at the 5% significance level; N.A. – not available 

Table 14 presents the results of the cross-tabulation of clusters according to the industry. There is an equal number of 

companies from secondary and tertiary sector present in the cluster 1 (both 36%), while the most companies assigned to 

second cluster (34%) is from the secondary sector and, in comparison to the first cluster, cluster 2 is comprised of a 

more companies from the quinary sector. However, there is no statistically significant difference between clusters 

regarding the industry type of the observed companies. 

Table 14. Cross-tabulation of clusters according to industry 

 Characteristic  Category Cluster 1 Cluster 2 Chi-square (p-value) 

Industry 

  

  

  

Primary 2 3 10.205 

(0.070) Secondary 33 29 

Tertiary 33 20 

Quaternary 17 13 

Quinary 5 15 

N.A. 2 5 

Source: authors’ work; Note: N.A. – not available 

The results of the cross-tabulation of clusters according to the dominant organizational culture is presented in table 15. 

The dominant organizational culture among the companies from the cluster 1 is the clan culture (38%). According to the 

Cameron and Quinn [32], the companies with dominant clan culture are family-like, internally focused and flexible, 
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characterized with teamwork, employee involvement programs and corporate commitment to employees. Within the 

cluster 2, most of the companies (44%) have hierarchy as their dominant organizational culture. Those companies are 

also internally focused, but at the same time strongly focused on stability and control and characterized by formal 

procedures, rules and policies [32]. The cross-tabulation analysis revealed statistically significant differences between 

clusters at the 5% significance level in terms of dominant organizational culture type. These differences could explain 

the higher average results of the individual BI and OP indicators of the companies from the first cluster in comparison 

to those from the second one if characteristics of the dominant organizational cultures are taken into consideration. It is 

important to notice that the use of BI system is mostly voluntary and that it has been shown that socio-organizational 

factors are the key drivers of BI acceptance and use [47]. Therefore, in organizations with the dominant Clan culture, 

where the value of BI has been recognized (BI9), the use of BI will be encouraged and will result in high levels of BI 

usage (BI1). On the other side, in many hierarchical organizations, focused on control and governed by rules and 

policies, the need to implement and use of BI will not be questioned and therefore the value will not be understood 

(BI9) to the same extent as in more flexible organizations and its use will not be encouraged (opposed to enforced) 

throughout the organization (BI1). 

Table 15. Cross-tabulation of clusters according to dominant culture 

 Characteristic Category Cluster 1 Cluster 2 Chi-square (p-value) 

Organizational culture 

  

  

  

Clan 35 21 8.526* 

(0.036) Adhocracy 9 5 

Market 26 22 

Hierarchy 22 37 

Source: authors’ work; Note: * - statistically significant correlations at the 5% significance level 

6. Conclusion 

The goal of this paper was to analyze the impact of the level of BI maturity to organizational performance of the 

company. In that analysis, the role of the organizational culture has been taken into consideration. The paper presented 

the results of the k-means cluster analysis performed on a sample of 177 companies from Croatia and Slovenia. Overall, 

two clusters have been identified throughout the analysis. The cross-tabulation analysis of the identified clusters 

revealed that the dominant organizational culture among the companies assigned to the first cluster is the flexible and 

friendly clan culture, while the dominant organizational culture among companies from the second cluster is the 

structured and formal hierarchy culture. Also, the analysis revealed statistically significant differences between clusters 

in terms of the dominant organizational culture and yearly turnover.  

The results of cluster analysis clearly show that organizations that can be labeled as top performers (Cluster 1) tend 

to have more mature BI, as opposed to lower performers (Cluster 2). While this study is not conclusive in terms of 

showing causal relationship between BI maturity and organizational performance, it demonstrates importance of all the 

BI maturity dimensions. Besides, significant differences between in terms of dominant organizational culture type 

confirm that some organizational culture settings are more appropriate for achieving higher level of BI maturity. 

Considering the nature of different organizational culture types, the most probable explanation of the results is that 

while the investments in BI technology are important, achieving overall high level of BI maturity go hand in hand and 

with some organizational culture characteristics which can in turn result in improved organizational performance. 

Although this research extends the body of knowledge, there are also some limitations to be recognized. One of the 

limitations of this research is unequal ratio of responses gathered from Croatia and Slovenia and relatively small 

number of respondents on which this research is based, so the generalization of conclusions is limited and further 

validation and research is needed in order to strengthen the conclusions drawn from this paper. 
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